Part Number Hot Search : 
VSC8021 N26302M 20367 STPS2 DS21354 2SC3296 T3274518 90120
Product Description
Full Text Search
 

To Download IRFB4410ZG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  01/06/09 www.irf.com 1 hexfet   power mosfet s d g benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits to-220ab IRFB4410ZGpbf IRFB4410ZGpbf gds gate drain source v dss 100v r ds ( on ) typ. 7.2m max. 9.0m i d ( silicon limited ) 97a pd - 96213 s d g d absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, vgs @ 10v (silicon limited) a i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) sin g le pulse avalanche ener g y  mj i ar avalanche current  a e ar repetitive avalanche ener g y mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.65 r cs case-to-sink, flat greased surface , to-220 0.50 CCC c/w r ja junction-to-ambient, to-220 CCC 62 c 300 max. 9769 390242 see fig. 14, 15, 22a, 22b, 230 16 -55 to + 175 20 1.5 10lbf  in (1.1n  m) downloaded from: http:///

 2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.143mh r g = 25 ? , i as = 58a, v gs =10v. part not recommended for use above this value.  i sd 58a, di/dt 610a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .     
      static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown volta g e 100 CCC CCC v ? v (br)dss / ? t j breakdown volta g e temp. coefficient CCC 0.12 CCC v/c r ds(on) static drain-to-source on-resistance CCC 7.2 9.0 m ? v gs(th) gate threshold volta g e 2.0 CCC 4.0 v i dss drain-to-source leaka g e current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leaka g e CCC CCC 100 na gate-to-source reverse leaka g e CCC CCC -100 r g internal gate resistance CCC 0.70 CCC ? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units g fs forward transconductance 140 CCC CCC s q g total gate char g e CCC 83 120 nc q gs gate-to-source char g e CCC 19 CCC q gd gate-to-drain ("miller") char g e CCC 27 q sync total gate char g e sync. (q g - q gd ) CCC 56 CCC t d(on) turn-on delay time CCC 16 CCC ns t r rise time CCC 52 CCC t d(off) turn-off delay time CCC 43 CCC t f fall time CCC 57 CCC c iss input capacitance CCC 4820 CCC pf c oss output capacitance CCC 340 CCC c rss reverse transfer capacitance CCC 170 CCC c oss eff. (er) effective output capacitance (energy related)  CCC 420 CCC c oss eff. (tr) effective output capacitance (time related)  CCC 690 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 97 a (body diode) i sm pulsed source current CCC CCC 390 a (body diode)  v sd diode forward volta g e CCC CCC 1.3 v t rr reverse recovery time CCC 38 57 ns t j = 25c v r = 85v, CCC 46 69 t j = 125c i f = 58a q rr reverse recovery char g e CCC 53 80 nc t j = 25c di / dt = 100a / s  CCC 82 120 t j = 125c i rrm reverse recovery current CCC 2.5 CCC a t j = 25c t on forward turn-on time intrinsic turn-on time is ne g li g ible (turn-on is dominated by ls+ld) i d = 58a r g =2.7 ? v gs = 10v  v dd = 65v i d = 58a, v ds =0v, v gs = 10v  t j = 25c, i s = 58a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 5ma  v gs = 10v, i d = 58a  v ds = v gs , i d = 150a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig.5 v gs = 0v, v ds = 0v to 80v , see fig.11 v gs = 0v, v ds = 0v to 80v  conditions v ds = 10v, i d = 58a i d = 58a v gs = 20v v gs = -20v downloaded from: http:///

 www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0 2 04 06 08 01 0 0 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 40v v ds = 20v i d = 58a 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 58a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 90 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma -10 0 10 20 30 40 50 60 70 80 90 100 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 e n e r g y ( j ) 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 900 1000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.4a 9.4a bottom 58a 25 50 75 100 125 150 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a ) downloaded from: http:///

 www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri ri (c/w) i (sec) 0.237 0.0001780.413 0.003772 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 58a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) downloaded from: http:///

 6 www.irf.com   
      fig 16. threshold voltage vs. temperature            
      
        -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150a i d = 250a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 di f /dt (a/s) 0 50 100 150 200 250 300 350 400 450 q r r ( n c ) i f = 58a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/s) 0 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 39a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 58a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 39a v r = 85v t j = 25c _____ t j = 125c ---------- downloaded from: http:///

 www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit fig 24a. gate charge test circuit fig 24b. gate charge waveform fig 21.    
    for n-channel hexfet   power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period       + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
     1k vcc dut 0 l s 20k vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as v gs v dd v ds l d d.u.t + - second pulse width < 1s duty factor < 0.1% v ds v gs 90% 10% t d(off) t d(on) t f t r downloaded from: http:///

 8 www.irf.com to-220ab packages are not recommended for surface mount application. 

 
 

  
          
       
   

       ! "# " $ %   &    ' (  & (&) 
* && *+
 )   & ) (&) ,,+,& - ,- +(& * (&)   .//0  !% .% "# 1 $ % ( ) * data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/2009 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB4410ZG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X